An enrichment of KK -theory over the category of symmetric spectra

نویسندگان

  • Michael Joachim
  • Stephan Stolz
چکیده

In [6] Higson showed that the formal properties of the Kasparov KK -theory groups are best understood if one regards KK (A, B) for separable C∗-algebras A, B as the morphism set of a category KK . In category language the composition and exterior KK product give KK the structure of a symmetric monoidal category which is enriched over abelian groups. We show that the enrichment of KK can be lifted to an enrichment over the category of symmetric spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enrichments of Additive Model Categories

We prove that any stable, additive, combinatorial model category M has a canonical model enrichment over Sp(sAb) (symmetric spectra based on simplicial abelian groups). So to any object X ∈ M one can attach an endomorphism ring object in this category, denoted hEndad(X). Since the homotopy theory of ring objects in Sp(sAb) is equivalent to the homotopy theory of differential graded algebras, on...

متن کامل

Enriched Model Categories and an Application to Additive Endomorphism Spectra

We define the notion of an additive model category and prove that any stable, additive, combinatorial model category M has a model enrichment over Sp(sAb) (symmetric spectra based on simplicial abelian groups). So to any object X ∈ M one can attach an endomorphism ring object, denoted hEndad(X), in this category of spectra. One can also obtain an associated differential graded algebra carrying ...

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

A-local symmetric spectra

This paper is about importing the stable homotopy theory of symmetric spectra [4] and more generally presheaves of symmetric spectra [8] into the Morel-Voevodsky stable category [9], [11], [12]. Loosely speaking, the latter is the result of formally inverting the functor X 7→ T∧X on the category of pointed simplicial presheaves on the smooth Nisnevich site of a field within the Morel-Voevodsky ...

متن کامل

Homotopy Theory of Modules over Operads in Symmetric Spectra

We establish model category structures on algebras and modules over operads in symmetric spectra, and study when a morphism of operads induces a Quillen equivalence between corresponding categories of algebras (resp. modules) over operads.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009